

BSTTD15-0618S 6-18GHz 5-bit CNC delay chip Data Sheet

I. Product Introduction

BSTTD15-0618S is a high-performance GaAs MMIC 5-bit digitally controlled delay device chip with a frequency range of 6 to 18 GHz and delay options of 10 ps, 20 ps, 40 ps, 80 ps, and 160 ps. It features low insertion loss and high delay accuracy.

The chip uses on-chip through-hole metallization technology to ensure good grounding, without the need for additional grounding measures, and is simple and convenient to use.

The back side is metallized and suitable for eutectic sintering or conductive adhesive bonding.

II. Key Technical Indicators

Frequency range:	6-18GHz
Insertion loss:	2dB
Input return loss:	18dB
 Output return loss: 	20dB
 Delay bit number: 	5 bits
Delay range:	10ps-310ps
Chip size:	3.5mm × 4.0mm × 0.1mm

III. Functional Block Diagram

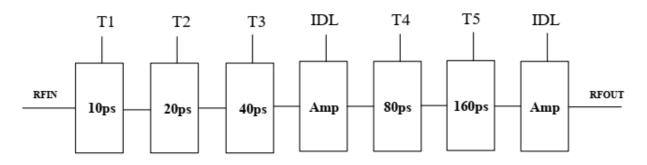


Figure 1.

IV. Electrical Performance Table ($T_A = +25^{\circ}C$, $T1 \sim T5 = 0/+5V$, $V_{ss} = -5V$, $V_{DD} = +5V$)

Table 1.

PARAMETER NAME		SYMBOL	MINIMUM	TYPICAL VALUES	MAXIMUM	UNIT
Frequency range		Freq	6	_	18	GHz
Insertion loss		IL	_	2	4.5	dB
Delay	10ps	TD	9.2	10	10.6	
	20ps		19.0	20	21.5	
	40ps		38.0	40	43.0	ps
	80ps		79.0	80	82.5	
	160ps		158.0	160	163.0	
	310ps		306.0	310	314.0	
Amplitude Modulation		ΔIL	-1.5	_	1.2	dB
Input return loss		RL_IN	15	18	_	dB
Output return loss		RL_OUT	18	20	_	dB
Quiescent operating current		IDQ	_	70	_	mA

V. Absolute Maximum Ratings

Table 2.

PARAMETER	LIMIT VALUE		
T1~T5/IDL voltage range	0V ~ +6.5V		
VDD voltage range	5 ± 2V		
Operating temperature	-55°C ~ +125°C		
Storage temperature	-65°C ~ +150°C		

VI. Test Curve

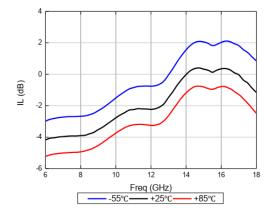


Figure 2. Insertion loss

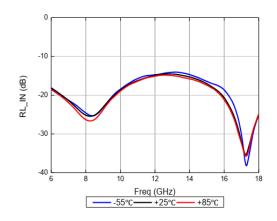


Figure 3. Input return loss

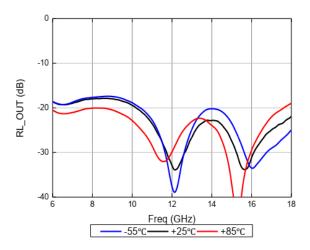


Figure 4. Output return loss

Figure 6. 10ps amplitude modulation

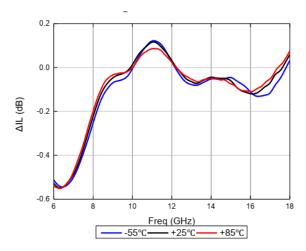


Figure 8. 20ps amplitude modulation

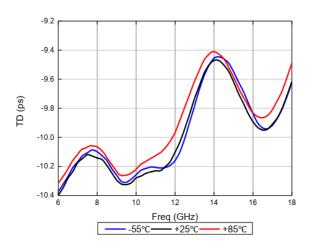


Figure 5. 10ps delay

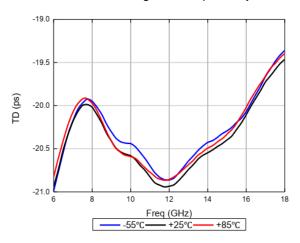


Figure 7. 120ps delay

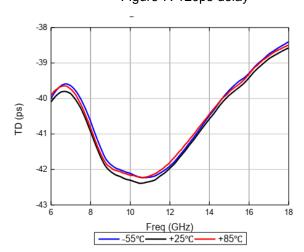


Figure 9. 40ps delay

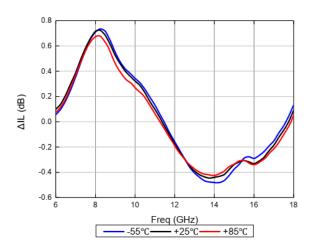


Figure 10. 40ps amplitude modulation

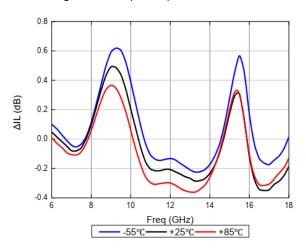


Figure 12. 80ps amplitude modulation

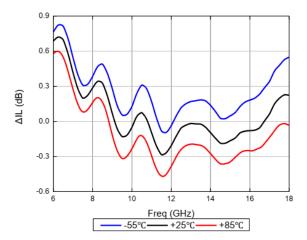


Figure 14. 160ps amplitude modulation

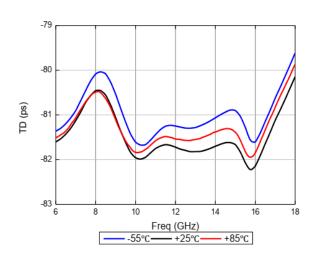


Figure 11. 80ps delay

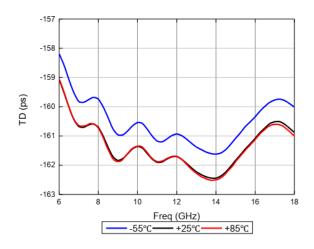


Figure 13. 160ps delay

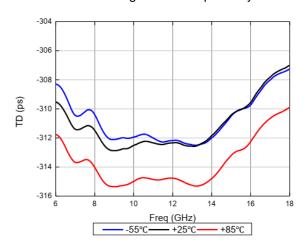


Figure 15. 310ps delay

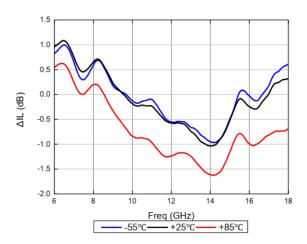


Figure 16. 310ps amplitude modulation

VII. Chip Port Diagram (unit: μm)

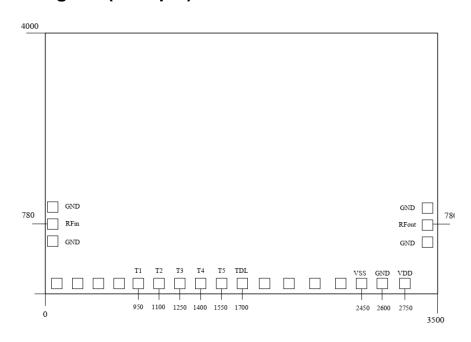


Figure 17.

VIII. Port Definition

Table 3.

LOGO	FUNCTION DEFINITION	SIGNAL OR VOLTAGE	
RFIN	RF signal input terminal, no DC blocking capacitor	RF	
RFOUT	RF signal output terminal, no DC blocking capacitor	RF	
T1~T5/IDL	control signal	0/+5V	
Vss	Negative power supply voltage	-5V	
VDD	Positive power supply	+5V	
GND	Grounding	1	

IX. Suggested Assembly Drawing

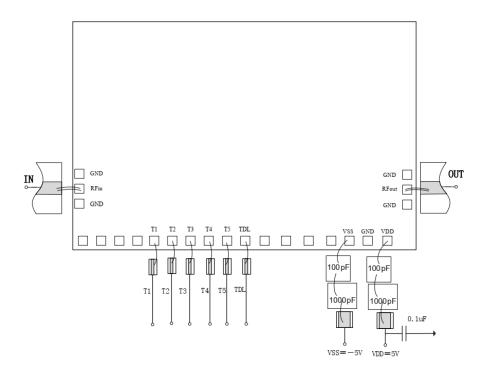


Figure 18.

X. Truth table

0 represents low level: 0V, 1 represents high level: +3~+5.5V

Table 4.

STATE	T1	T2	Т3	T4	T5	IDL
Ground state	0	0	0	0	0	0
10ps	1	0	0	0	0	0
20ps	0	1	0	0	0	0
40ps	0	0	1	0	0	0
80ps	0	0	0	1	0	0
160ps	0	0	0	0	1	0
Isolation	-	-	-	-	-	1

XI. Precautions

- Assemble and use in a clean environment;
- GaAs material is very brittle and the chip surface is easily damaged (do not touch the surface), so you must be careful when using it;

- Use two bonding wires (25μm diameter gold wire) for input and output. Keep the bonding wires as short as possible and no longer than 500μm;
- The sintering temperature should not exceed 300°C, and the sintering time should be as short as possible, not exceeding 30 seconds;
- This product is an electrostatic sensitive device, please be careful to prevent static electricity during storage and use;
- Store in a dry, nitrogen environment;
- Do not attempt to clean the chip surface with dry or wet chemical methods.