

BSTLN197-0004

0.02-4GHz low noise amplifier chip

I. Product Introduction

BSTLN197-0004 is a low noise amplifier chip with excellent performance. The frequency range covers 0.02~4GHz.

Used under VD=+3V/+5V. When VD=+5V, the small signal gain is 20dB, the noise figure is 0.9dB, and the output 1dB compression power is 17.5dBm. The amplifier adopts 2×2mm surface mount leadless plastic package, and the surface of the pin pad is tinned, which is suitable for reflow soldering installation

II. Main Parameters

2.1. Functional Block Diagram

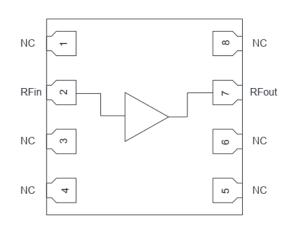


Figure 1

2.2. Key technical indicators

Frequency range: 0.02-4GHz

Small signal gain: 20dB

Output 1dB compression power: 17.5dBm

Noise figure: 0.9dB

Input return loss: 15dB

Output return loss: 9dB

Power supply: +5V@52mA

• Chip size: 2.00mm × 2.00mm × 0.75mm

2.3. Electrical performance table (TA = +25°C, VD = +5V)

Table 1

PARAMETER NAME	SYMBOL	MINIMUM	TYPICAL VALUE	MAXIMUM	UNIT
Frequency range	Freq	0.02	_	4	GHz
Small Signal Gain	Gain	17.5	20	_	dB
Noise Figure	NF	_	0.9	1.3	dB
Output 1dB compression power	OP1dB	14	17.5	_	dBm
Input return loss	RL_IN	_	15	_	dB
Output return loss	RL_OUT	_	9	_	dB
Static operating current	IDQ	_	52	_	mA

2.4. Absolute maximum ratings

PARAMETER	VALUE
Maximum operating voltage	+6V
Maximum input power	+20dBm
Storage temperature	-65°C ~ +150°C
Operating temperature	-55°C ~ +125°C

III. Test curve

$$(T_A = +25 \, {}^{\circ}C)$$

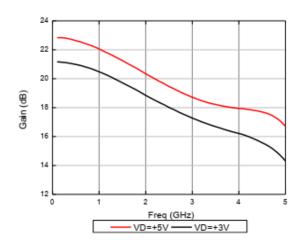


Figure 2. Small signal gain

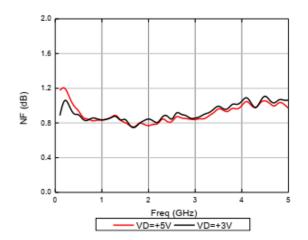


Figure 3. Noise figure

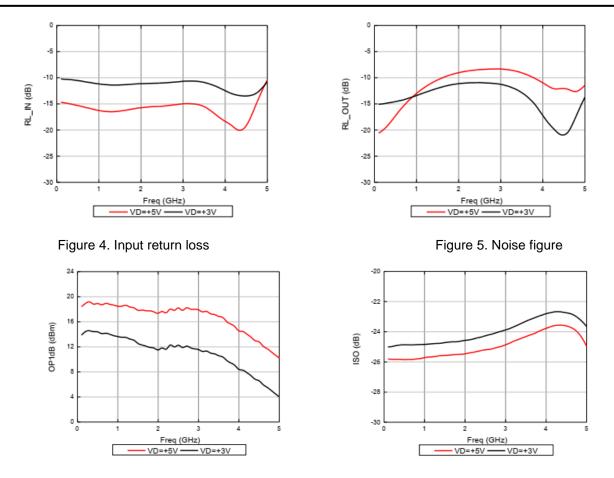


Figure 6. Output 1dB compression power

Figure 7. Reverse isolation

IV. Appearance structure diagram (unit: mm)

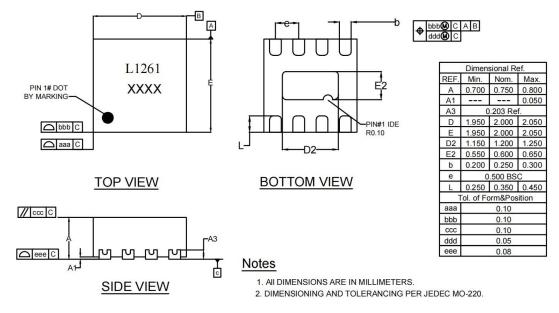


Figure 8

V. Pin Definition

SERIAL NUMBER	PIN NAME	DEFINITION	SIGNAL OR VOLTAGE
2	RFin	RF signal input terminal, external DC blocking capacitor is required	RF
7	RFout/VD	RF signal output terminal, external DC blocking capacitor is required	RF/DC
1, 3~6, 8	NC	Floating, recommended to be grounded	/
/	ePAD	The bottom of the chip needs to be well grounded to RF and DC	/

VI. Application Circuit

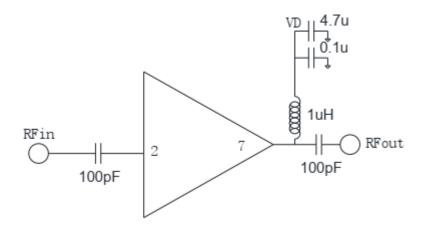


Figure 9

VII. Precautions

- Assemble and use in a clean environment;
- Sealing material: Low-pressure injection molding plastic that complies with RoHS regulations;
- Lead frame material: copper alloy;
- Lead surface plating: 100% matte tin;
- Maximum reflow peak temperature: 260°C;
- This product is an electrostatically sensitive device, please be careful to prevent static electricity during storage and use;
- Store in a dry, nitrogen environment;
- Do not attempt to clean the chip surface with dry or wet chemical methods.