

BSTLN109-0004C

0.1-3.5GHz low noise amplifier chip

I. Product Introduction

BSTLN109-0004C is a low noise amplifier chip with excellent performance, and the frequency range covers 0.1-3.5GHz, small signal gain 31.5dB, noise figure 0.7dB, output 1dB compression power 19.5dBm.

The amplifier uses 4×4mm surface mount leadless ceramic tube shell, the pin pad surface is gold-plated, suitable for reflow soldering installation.

II. Main Parameters

2.1. Functional Block Diagram



Figure 1

2.2. Key technical indicators

Frequency range: 0.1-3.5GHz

Small signal gain: 31.5dB

Noise figure: 0.7dB

Input Return Loss: 16.5dB

Output return loss: 17dB

• Output 1dB compression power: 19.5dBm

Power supply: +5V@77.9mA

• Chip size: 4.0mm×4.0mm×0.85mm

2.3. Electrical performance ($T_A = +25$ °C, $V_D = +5V$)

Table 1.

PARAMETER NAME	SYMBOL	MINIMUM	TYPICAL VALUE	MAXIMUM	UNIT
Frequency range	Freq	0.1	_	3.5	GHz
Small Signal Gain	Gain	30.5	31.5	32	dB
Gain Flatness	ΔG	_	±0.75	_	dB
Noise Figure	NF	0.6	0.7	0.8	dB
Output 1dB compression power	OP1dB	18.8	19.5	20.2	dBm
Input return loss	RL_IN	10	16.5	_	dB
Output return loss	RL_OUT	13.5	17	_	dB
Static operating current	ld	_	77.9	_	mA

2.4. Absolute maximum ratings

PARAMETER	VALUE
Maximum operating voltage	+7V
Maximum input power	+20dBm
Storage temperature	-65°C~+150°C
Operating temperature	-55°C~+125°C

III. Test curve

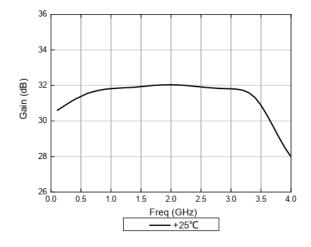


Figure 2. Small signal gain

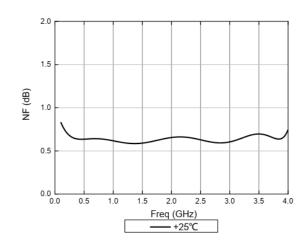
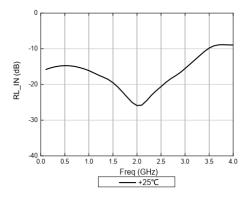
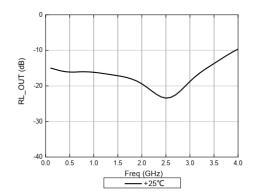
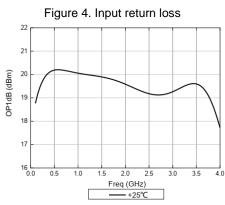





Figure 3. Noise figure

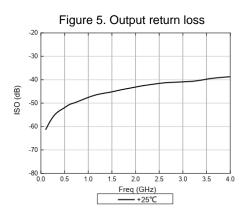
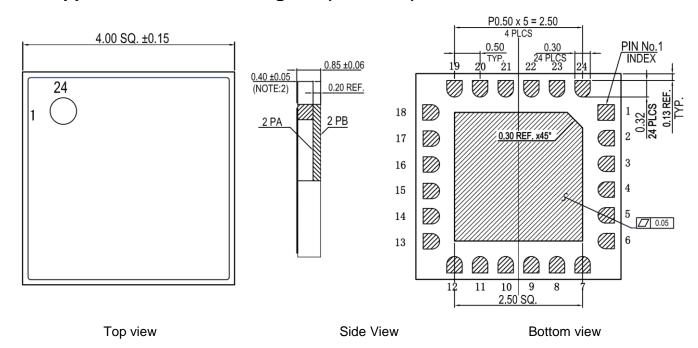
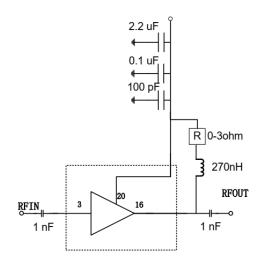


Figure 6. Output 1dB compression power

Figure 7. Isolation

IV. Appearance structure diagram (unit: mm)




Figure 8

V. Pin Definition

PIN NUMBER	PIN NAME	DEFINITION	SIGNAL OR VOLTAGE
3	RFIN	RF signal input, requires external DC blocking capacitor	RF
16	RFOUT	RF signal output, requires external DC blocking capacitor	RF
20	V_{dd}	Low Noise Drain Bias	+5V
2, 4, 15, 17, ePAD	GND	The bottom of the chip needs to be well grounded to RF and DC	/
1, 5~14, 18, 19, 21~24	N/C	No welding required	/

VI. Recommended assembly drawing

Picture 7.

Note: R is adjustable within the range of 0-3ohm.

VII. Precautions

- Assemble and use in a clean environment;
- Sealing material: Ceramic material that meets ROSH standards;
- Lead frame material: copper alloy;
- Lead surface plating: gold, gold layer thickness greater than 1.5um;
- Maximum reflow peak temperature: 260°C;
- This product is an electrostatically sensitive device, please be careful to prevent static electricity during storage and use;
- Store in a dry, nitrogen environment;
- Do not attempt to clean the chip surface with dry or wet chemical methods.