

BSTFL28 SERIES CONVERTERS 65WATT

Product Features

- 1. 16 to 40 VDC input, typical 28V
- **2.** 50W to 65W output power
- 3. -55 °C to +125 °C operation
- 4. Fully isolated
- 5. 100M Q minimum (500V DC) isolation
- **6.** Inhibit and indefinite short circuit protection
- 7. 43W/in³ power density
- 8. Equivalent with Interpoint's MFL Series
- 9. Hermetically sealed meatal cases

Table 1 Product models

MODELS	
SINGLE	DUAL
BSTFL28S05	BSTFL28D05
BSTFL28S12	BSTFL28D12
BSTFL28S15	BSTFL28D15
BSTFL28S28	

Product description

The BSTFL28 Series of DC/DC converters offer up to 65 watts of output power with high reliability. The converters are packaged in hermetically sealed metal cases, making them ideal for use in aviation, aerospace and other high reliability applications.

The BSTFL28 series of converters use a pulse width modulated and single ended forward topology design. The operating principle is that the sampling signal of output voltage, coupled by the opto-coupler, works together with the sampling signal of input loop current to regulate the pulse width of the controller. The magnetic feedback technology can avoid magnetic saturation and improve products reliability effectively.

Thick film hybrid techniques provide the BSTFL 28 Series of converters with reliability levels and optimum miniaturazation. The design and manufacturing process of BSTFL28 Series of converters are in compliance with General Standards of Hybrid Integrated Circuits and detailed standards of manufacturing. Connected to a BSTFDCE03 filter, the BSTFL28 Series of converters can achieve better electromagnetic compatibility (EMC) performance.

Absolute maximum ratings

Input Voltage: 16 to 40 VDC

Power Dissipation: 65 watts

• Lead Soldering Temperature:300∘c(10s)

Storage Temperature Range: -55^oc to +125^oc

Inhibit Voltage: 0.2V max

• External Synchronous Signals: Frequency Range: 400k to 600kHz Duty Ratio: 40% to 60%

Level: 0.8 VwVw5V

Recommended operating conditions

Input VDC: 16 to 40 V

• Case Temperature (Tc): -55 c to +125

Electrical performance

BSTFL28S05, **BSTFL28S12**

Table 2. Electrical Characteristics: (TCASE = -55°C to +125°C, VIN = $28V \pm 0.5V$, Full Load Unless Otherwise Specified)

Single output models			BSTFL28S0	5	BSTFL28S12		
Parameter	Conditions		Min	Мах	Min	Мах	
Output Voltage(V)	<i>lo</i> =full load	Ambient temperature high and low temperature		5.050 5.125	11.88 11.76	12.12 12.24	
Output Current(A)	<i>Vn</i> = 16 TO	40 VDC		10		5	

Output Power(W)			50		60
Output Ripple Voltage (mV)	BW=10 kHz Ambient temperature to 2 MHz high and low lo=full load temperature		35 50		75 100
Line Regulation(mV)	Vin = 16 TO 40 VDC, lo=full load		20		20
Load Regulation(mV)	lo=No load to load		20		20
Input Ripple Current (mA)	BW=10 kHz Ambient temperature to 10 MHz high and low lo=full load temperature		45 50		45 50
Efficiency (%)	temperature	77 75		83 81	>
Isolation (M Q)	VDC, TA = 25° C	100		100	
Inhibit Function	TA = 25° C, Inhibit voltage, output disabled	0	0.2	0	0.2
Protection Function	TA = 25° C	5		5	
Start-up Overshoot (mV pk)	Vin=0 to 28V, Io=full load		25		50
Start-up Delay(ms)	Vin=0 to 28V, Io=full load		6		6
Capacitive Load(☐ F)	TA = 25° C, No effect on DC performance		1000		1000
Switching Frequency (kHz)	I₀=full load	400	600	400	600
Step Load Response Transient (mV pK)	50% load full load -50% load	-350	350		600
Step Load Response Recovery (🏿 s)	50% load full load -50% load		3000		3000
Step Line Response Transient (mV pK)	Vin=16~40V, Io=full load, Vin=40~16V, Io=full load		300		400
Step Line Response Recovery (□s)	Vin=16~40V, Io=full load, Vin=40~16V, Io=full load		300		300
Load Fault recovery (ms)	IO:short circuit to full load		4		4

Notes to Specifications:

- The step load transition time should be greater than or equal to 10 s.
- The step line transition time should be greater than or equal to 10 s

• Recovery time is measured from application of the transient to point at which Vout is within 1% of Vout at final value.

BSTFL28S15, BSTFL28S28

Table 3 Electrical Characteristics: (TCASE = -55°C to +125°C, VIN = 28V \pm 0.5V, Full Load, Unless Otherwise Specified)

Single output models			BSTFL28S15		BSTFL28S28	
Parameter	Conditions		Min	Max	Min	Max
Output Voltage (V)	lo=full load	Ambient temperature high and low temperature	14.85 14.55	15.15 15.45	27.72 27.16	28.28 28.84
Output Current(A)	<i>Vn</i> = 16 TO 40 VE	C		4.33		2.32
Output Power(W)				65	>	65
Output Ripple Voltage (mV)		Ambient temperature high and low temperature	>	85 110	>	200 300
Line Regulation(mV)	Vin = 16 TO 40 VI	DC, Io=full load	>	20	>	120
Load Regulation(mV)	lo=No load to load	d		20		150
Input Ripple Current (mA)	<i>BW</i> =10 kHz to 10 MHz lo=full load	Ambient temperature high and low temperature	> >	45 50	> >	50 60
Efficiency (%)	lo=full load	Ambient temperature high and low temperature	84 82	> >	83 79	
Isolation (M Q)		Input to output or any pin to case (except case ground pin) at 500 VDC, TA = 25° C		>	100	
Inhibit Function	TA = 25° C, Inhibit	voltage, output disabled	0	0.2	0	0.2
Protection Function	TA = 25° C		5		5	
Start-up Overshoot (mV pk)	Vin=0 to 28V, Io=f	ull load		50		100
Start-up Delay(ms)	Vin=0 to 28V, Io=f	ull load		6		6
Capacitive Load(☐ F)	$TA = 25^{\circ} C$, No ef	fect on DC performance		1000		500
Switching Frequency(kHz)	lo=full load		400	600	400	600
Step Load Response Transient (mV pK)	50% load full load -50% load			600		1400
Step Load Response Recovery (🏿 s)	50% load full load -50% load			3000		3000
Step Line Response Transient (mV pK)	Vin=16~40V, lo=fi Vin=40~16V, lo=fi			400		800

	Vin=16~40V, Io=full load, Vin=40~16V, Io=full load	300	400
Load Fault recovery (ms)	IO:short circuit to full load	4	4

Notes to Specifications:

- The step load transition time should be greater than or equal to 10 s.
- ullet The step line transition time should be greater than or equal to 10 s
- Recovery time is measured from application of the transient to point at which Vout is within 1% of Vout at final value.

BSTFL28D05 / BSTFL28D12 / BSTFL28D15

Table 4. Electrical Characteristics: (TCASE = -55°C to +125°C, VIN = +28V \pm 0.5V, Full Load, Unless Otherwise Specified)

Dual output models	Dual output models				28D05	3D05 BSTFL28D12		BSTFL28D15	
Parameter	Conditions		Min	Max	Min	Max	Min	Max	
Output Voltage (V)	lo1= lo2= full load	and low temper Ambient tempe	Ambient temperature high and low temperature Ambient temperature high -		5.05 5.15 -4.92	11.88 11.64 -12.18	12.12 12.36 -11.82	14.85 14.55 -15.23	15.15 15.45 -14.77
Output Current(A)	VIN = 16 TO 40 V	and low temper DC	ature	-5.18	-4.82 5	-12.42	-11.58 2.5	-15.53	-14.47 2.17
Output Power(W)	-			50		60		65	
Output Ripple Voltage(mV)	2 MHz Io1= Io2=	Ambient temperature high and low temperature Ambient temperature high and low temperature			50 100 50 100		80 120 80 120		100 150 100 150
	VIN = 16 TO 40 V full load				50 100		50 100		50 100
Load Regulation (mV)	lo1= lo2=No load	to full load +V _{out}			50 100		50 120		50 150
Input Ripple Current(mA)	11() MHZ IO1=	Ambient temperature high and low temperature			45 50		45 50		45 50

		1	-		1		
Efficiency (%)	lo1= lo2=full load Ambient temperature high and low temperature	77 75		83 81		84 82	
IISOIATION (IVIC)	Input to output or any pin to case (except case ground pin) at 500 VDC, TA = 25° C	100		100		100	
Inhibit Function	TA = 25° C, Inhibit voltage, output disabled	0	0.2	0	0.2	0	0.2
Protection Function	TA = 25° C	5		5		5	
Start-up Overshoot (mV pk)	V _{in} =0 to 28V, Io1=Io2=full load	-25	25	-50	50	-50	50
Start-up delay (ms)	Vin=0 to 28V, lo⊫lo2		6		6		6
Capacitive Load(µF)	TA = 25° C, No effect on DC performance		500		500		500
Switching Frequency(kHz)	lo1=lo2=full load	400	600	400	600	400	600
Resnonse	50% load to full load or full load to 50% load, Each Vout has balanced load	-350	350	-600	600	-600	600
Response	50% load to full load or full load to 50% load, Each Vout has balanced load		3000		3000		3000
Step Line Response Transient (mV pK)	Vin=16~40V, Io1= Io2=full load Vin=40~16V, Io1= Io2=full load	-300	300	-400	400	-400	400
Step Line Response ecovery (阝s)	Vin=16~40V, Io1=Io2=full load Vin=40~16V, Io1= Io2=full load		300		300		300
Load Fault Short Circuit recovery (ms)	lo1= lo2 short circuit to full load		4		4		4

Notes to Specifications:

- $\bullet~$ The step load transition time should be greater than or equal to 10 $\rm s$
- The step line transition time should be greater than or equal to 10 s.
- Recovery time is measured from application of the transient to point at which Vout is within 1% of Vout at final value.

Typical performance curves

Single output model (BSTFL28S15F)

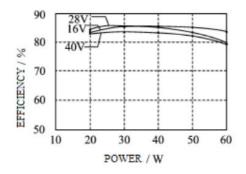


Figure 2. Efficiency (output power)

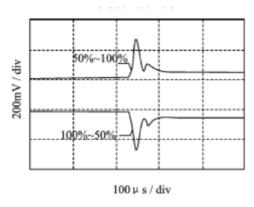
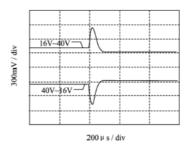



Figure 4. Step load response

200 u s / div Figure 3. Step line response

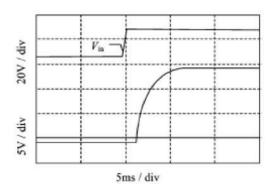


Figure 5. Start-up overshoot/ delay

Dual output model (BSTFL28D15)

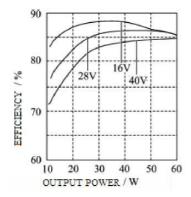


Figure 6. Efficiency (output power)

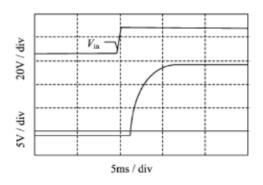


Figure 7. Step line response

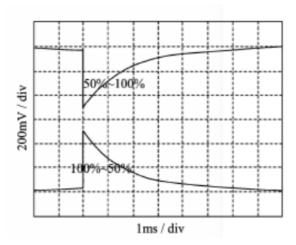


Figure 8. Step load response

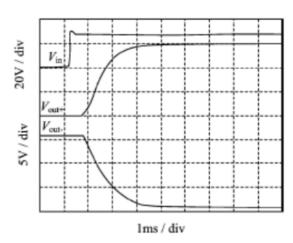


Figure 9. start-up overshoot/delay

Typical MTBF curves

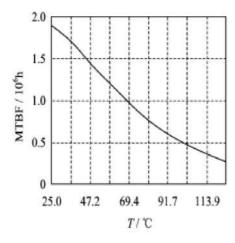


Figure 10. Model BSTFL 28S15

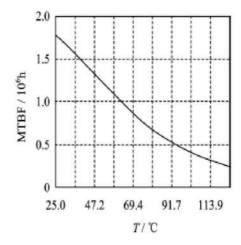
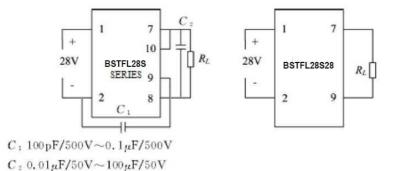



Figure 11. Model BSTFL28D15

Typical connection diagram

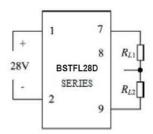


Figure 12. Application Connection Diagram For Single Output Models

28V BSTFL28S SERIES RL

Figure 15. Diagram for Single **Output Models**

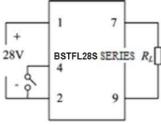


Figure 16. Inhibit Drive Connection Diagram for Model BSTFL28S28

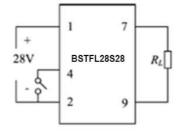


Figure 13. Application Connection

Diagram For Model BSTFL28S28

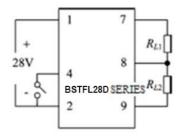


Figure 14. Application Connection

Diagram For Dual Output Models

Figure 17. Inhibit Drive Connection Diagram for Dual Output Models

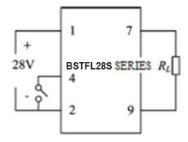


Figure 18. Connection Diagram for Single Output Converter with **EMI Filter**

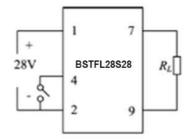


Figure 19. Connection Diagram for Model BSTFL28S28 Converter with EMI Filter

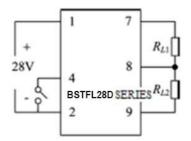


Figure 20. Connection Diagram for Dual Output Converter with **EMI Filter**

Package specifications

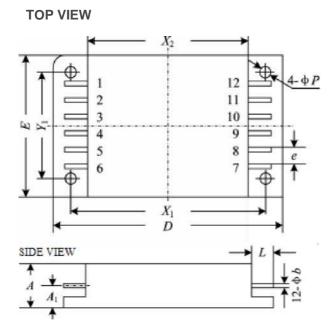


Figure 21. Package Outline

Jnits :mm			
Dimension Sy	Тур.	Max.	
A	-	-	10.16
A_1	5.39	-	5.79
Φb	0.89	_	1.14
D	75.95	-	76.45
e	_	5.08	_
E	37.97	-	38. 23
L	5.58	_	6.10
ϕP	3. 12	-	3.38
X_{1}	 69.85	-	70.36
X_2	63.37	_	63.63
Y_1	31.88	-	32.13

Table 5. Case Materials

Case Model	IHAAAAr	Header Plating	Cover	Cover Plating	Pin	Pin Plating	Sealing Style	Notes
FPP6438-12	Cold Rolled Steel	Nickel	Iron/Nickel Alloy(4J42)	Nickel	Copper Compound	Nickel/Gold	Compression Seal	

Notes: Solder pins individually with heat application not exceeding 300° C for 10 seconds per pin.

Pin designation

Table 6. Pin Designation

Pin	Single Output	Dual Output
1	Positive Input	Positive Input
2	Input Common	Input Common
3	NC	NC
4	Inhibit 1	Inhibit 1
5	NC	NC
6	Synchronous Input	Synchronous Input
7	Output	Positive Output
8	Output Common	Output Common
9	Negative Output Sense	Negative Output
10	Positive Output Sense	NC
11	NC	NC
12	Inhibit 2	Inhibit 2

Ordering information

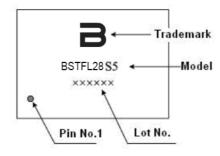


Figure 22. Bottom View of Pin

Application Notes:

- The correct power supply is to be ensured that may not cause permanent damage to the device.
- When the electrical performance is tested, the testing position should be pin of the device.
- When the device is mounted, the bottom of the device should be closely attached to the circuit board. So as to avoid the damage of the pins, the shockproof should be increased when it is required
- The pin should not be bending to avoid the glass insulator breaking and case leakage.
- When the case temperature is at 105c it is suggested that thickness of the thermal sinking plate (copper material) is 5mm, the dimension is greater than 120mm **X** 100mm.