

BSTFGPA02-0204Q

2.7-3.5 GHz GaN Internally Matched Power Amplifier

Data sheet

I. Product Introduction

BSTFGPA02-0204Q is a GaN HEMT chip with an operating frequency range of 2.7 GHz to 3.5 GHz. It has a typical saturated output power of 56 dBm and a power gain greater than 13 dB. BSTFGPA02-0204Q is an internally matched power tube for standard.

It is suitable for the communication frequency band and provides the best power and gain performance in 50 ohm system.

II. Key technical indicators

Frequency range: 2.7GHz to 3.5GHz

Power gain:

13dB

• Saturated output power: 56dBm

Power added efficiency:
 50%

Package:
 CMW025B

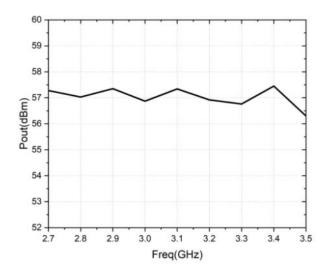
III. Application Areas

- Microwave transceiver components
- Solid-state transmitter

IV. Electrical performance table ($T_A = +25$ °C)

Table 1.

PARAMETER NAME	TEST CONDITIONS	MINIMUM	TYPICAL VALUES	MAXIMUM	UNIT
Saturated output power	f=2.7 \sim 3.5GHz V _{GS} = a point between -2 and -4V V _{DS} =44V	56	56.5	-	dBm
Power gain		13	13.5	-	dB
Additional efficiency		50	55	-	%


PARAMETER NAME	TEST CONDITIONS	MINIMUM	TYPICAL VALUES	MAXIMUM	UNIT
Power gain flatness	I _{DS} = (0.2 ~ 0.5) I _{DSS} Pulse width 300us, duty cycle 10%	-	-	1.5	dB
pinch-off voltage	V _{DS} =6V, I _{DS} ≤ 80mA	-4	-	-2	V
Gate-source reverse current	V _{DS} = 0V, V _{GS} = -10V	-	-	10	mA

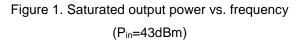

V. Absolute Maximum Ratings

Table 2.

PARAMATER	VALUE		
Source-drain voltage VDS	60V		
Gate-source voltage VGS	-5V		
Storage temperature	-65 °C ~+175 °C		
Channel temperature	200 °C		

VI. Typical curve (V_d=+44V, V_g=-2.9V, 10% duty cycle)

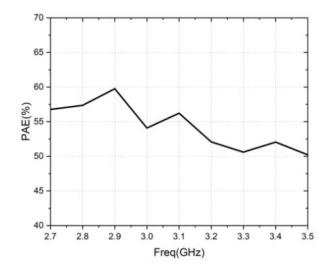


Figure 2. Additional efficiency vs. frequency $(P_{in}=43dBm)$

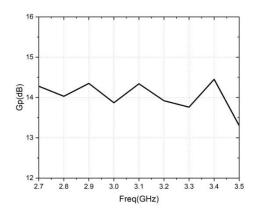


Figure 3. Power Gain vs. Frequency ($P_{in} = 43 dBm$)

VII. Overall dimensions (mm)

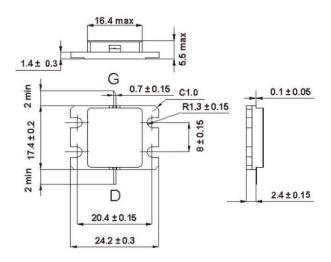


Figure 4.

VIII. Typical application circuit

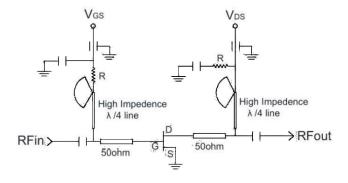


Figure 5.

IX. Precautions

- Storage: The chip must be placed in a container with electrostatic protection and stored in a nitrogen environment.
- Cleaning: Bare chips must be handled in a clean environment and it is prohibited to use liquid detergents to clean the chips.
- Electrostatic protection: Please strictly comply with ESD protection requirements to avoid electrostatic damage.
- General operation: Please use a vacuum chuck or precision pointed tweezers to handle the chip. Avoid touching the chip surface with tools or fingers during operation.
- Power-on sequence: When powering on, add the gate voltage first and then the drain voltage; when powering off, remove the drain voltage first and then the gate voltage.
- Mounting operation: Chip mounting can be done by AuSn solder eutectic sintering or conductive adhesive; bonding process, the mounting surface must be clean and flat, and the gap between the chip and the input and output RF connection line substrate must be as small as possible.
- Sintering process: Use 80/20 AuSn for sintering. The sintering temperature should not exceed 300 °C. The sintering time should be as short as possible, not exceeding 20 seconds, and the friction time should not exceed 3 seconds.
- Bonding process: When bonding conductive adhesive, dispense as little glue as possible, and refer to the information provided by the conductive adhesive manufacturer for curing conditions.
- Bonding Procedure: Unless otherwise specified, use two bonding wires (25µm diameter gold wire) for RF input and output, keeping the wires as short as possible. Thermosonic bonding temperature is 150 °C, using the lowest possible ultrasonic energy. For ball bonding, use a wedge pressure of 40-50 gf; for wedge bonding, use a wedge pressure of 18-22 gf.