

### BSTCC58-1418

## Ku-band four-channel multi-function chip

### **Data Sheet**

### I. Product Introduction

BSTCC58-1418 is a Ku-band four-channel multi-function chip.

3.3V power supply, the operating frequency range is 14GHz ~ 18GHz. The chip integrates low noise amplifier, driver amplifier, switch, 6 -digital controlled attenuator, 6 -digital controlled phase shifter, power divider, beam control and other modules. The transceiver link of each channel can provide a maximum attenuation range of 31.5dB, stepping 0.5dB, and a 360° phase shift range, stepping 5.625°. The chip adopts plastic QFN package, with a total of 68 pins and a chip size of 8mm×8mm.

## **II. Application Areas**

- Radar
- Communication
- Instrumentation

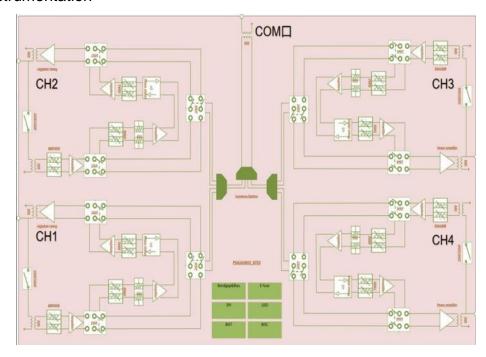



Figure 1. BSTCC58-1418 chip module schematic



## III. Key technical indicators

| • | Working power supply voltage: | 3.3V |
|---|-------------------------------|------|
|---|-------------------------------|------|

Operating frequency range:
 14GHz ~ 18GHz

• 6 -bit attenuation control, step 0.5dB

6 phase shift control bits, stepping
 5.625 °

• Receive gain: 4dB@16GHz

• (RF port to COM port)

• Transmitter linear gain: 14dB@16GHz

• (COM port to RF port)

• Gain flatness in receiving band: 1dB

• Gain flatness in the emission band: 3dB

Port standing wave ratio VSWR:

• Receive noise factor NF: 13dB (no attenuation)

• Receive input P-1dB: 1dBm

• Transmitter output P-1dB: 14dBm

RMS phase shift error:

Amplitude consistency during phase shift: < ±1dB</li>

• Attenuation accuracy: < 0.3dB+4%Ai

• RMS attenuation error: < 0.5dB

• Attenuation additional phase shift: < ±8°

• Transmit and receive switching time: < 100ns

• Single channel operating current: 65mA/85mA/135mA/1mA

@ Receive / Static Transmit /1dB Transmit / Load

Package and size:
 QFN 8mm×8mm

Process:
 SiGe BiCMOS



## **IV. Electrical Characteristics**

## 4.1. Basic electrical properties

Table 1.

| PARAMETER                               | CONDITION           | MINIMUM | TYPICAL<br>VALUE | MAXIMUM | UNIT |
|-----------------------------------------|---------------------|---------|------------------|---------|------|
| Frequency range                         |                     | 14      | _                | 18      | GHz  |
| Receive linear gain                     | RF port to COM port |         | 4                |         | dB   |
| Transmit linear gain                    | COM port to RF port |         | 14               |         | dB   |
| In-band gain flatness                   |                     |         |                  | 3       | dB   |
| Receive noise figure                    | No attenuation      |         |                  | 13      | dB   |
| Receive input P-1dB                     |                     |         | 1                |         | dBm  |
| Transmit output P-1dB                   |                     |         | 14               |         | dBm  |
| RMS Phase Shift Error                   |                     |         |                  | 3       | Deg  |
| Phase shift amplitude consistency       |                     | -1      |                  | 1       | dB   |
| RMS attenuation error                   |                     |         |                  | 0.5     | dB   |
| Attenuation of additional phase shift   |                     | -8      |                  | 8       | Deg  |
| Transmit/receive switching time         |                     |         |                  | 100     | ns   |
| Single channel receiving current        |                     |         | 65               |         | mA   |
| Single channel static emission current  |                     |         | 85               |         | mA   |
| Single channel 1dB transmission current |                     |         | 135              |         | mA   |
| Single channel load current             |                     |         | 1                |         | mA   |

## 4.2. Digital port electrical parameters

Table 2.

| PARAMETER                 | SYMBOL | CONDITION                             | MINIMUM | MAXIMUM | UNIT |
|---------------------------|--------|---------------------------------------|---------|---------|------|
| Input high level voltage  | VIH    | VCC = 2.7 V to 3.6 V                  | 1.7     | _       | V    |
| Input low level voltage   | VIL    | VCC = 2.7 V to 3.6 V                  | _       | 0.8     | V    |
| Input high level current  | IIH    | VCC = 2.7 V to 3.6 V                  | -500    | 500     | uA   |
| Input low level current   | IIL    | VCC = 2.7 V to 3.6 V                  | -500    | 500     | uA   |
| Output high level voltage | VOH    | VCC = 2.7 V to 3.6 V<br>IOH = -100 uA | VCC-0.2 | vcc     | V    |
| Output high level voltage | VOH    | VCC = 2.7 V<br>IOH = -8mA             | 2.4     | VCC     | V    |
| Output low level voltage  | VOL    | VCC = 2.7 V to 3.6 V<br>IOL= 100uA    | 0       | 0.2     | V    |
| Output low level voltage  | VOL    | VCC = 2.7 V,<br>IOL = 8mA             | 0       | 0.4     | V    |



### 4.3. Limit parameters

Table 3.

| PARAMETER              | VALUE        |  |  |
|------------------------|--------------|--|--|
| Maximum supply voltage | 3.6V         |  |  |
| Maximum RF input power | 15dBm        |  |  |
| Storage temperature    | -65 ∼ 150 °C |  |  |
| Operating temperature  | -55 ∼ 125 °C |  |  |

Note: For the above listed maximum limits, if the device is operated in an environment exceeding these limits, it is likely to cause permanent damage to the device.

In actual application, it is best not to operate the device in an environment where the limit value or the value exceeds this limit value.

### 4.4. ESD Protection

The anti-static level (HBM) of BSTCC58-1418 is at least Class 2: ≥2000V. When handling, take appropriate ESD protection measures to avoid performance degradation or functional failure.

## V. Pin Configuration

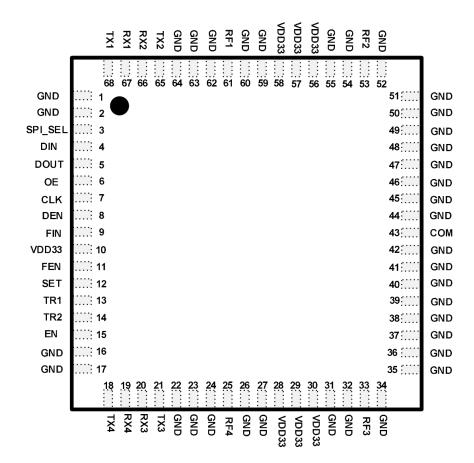



Figure 2. Chip pin layout



# 5.1. Chip pad function information table

Table 4.

| PIN<br>NUMBER | PIN<br>NAME | PORT<br>ATTRIBUTES | PIN FUNCTION                                                           | PIN<br>NUMBER | PIN<br>NAME | PORT<br>ATTRIBUTES | PIN FUNCTION                                  |
|---------------|-------------|--------------------|------------------------------------------------------------------------|---------------|-------------|--------------------|-----------------------------------------------|
| 1             | GND         | Ground             | Ground                                                                 | 35            | GND         | Ground             | Ground                                        |
| 2             | GND         | Ground             | Ground                                                                 | 36            | GND         | Ground             | Ground                                        |
| 3             | SPI_SE<br>L | Digital Input      | Debug mode selection<br>signal, weak pull-down,<br>floating by default | 37            | GND         | Ground             | Ground                                        |
| 4             | DIN         | Digital Input      | Serial data input, weak pull-down                                      | 38            | GND         | Ground             | Ground                                        |
| 5             | DOUT        | Digital Output     | Serial data output, weak pull-up                                       | 39            | GND         | Ground             | Ground                                        |
| 6             | OE          | Digital Input      | Output enable, weak pull-down                                          | 40            | GND         | Ground             | Ground                                        |
| 7             | CLK         | Clock Input        | Digital clock signal, weak pull-down                                   | 41            | GND         | Ground             | Ground                                        |
| 8             | DEN         | Digital Input      | Secondary latch signal, weak pull-up                                   | 42            | GND         | Ground             | Ground                                        |
| 9             | FIN         | Digital Input      | Function register input, weak pull-down                                | 43            | СОМ         | Radio<br>Frequency | Public Port                                   |
| 10            | VDD33       | power supply       | Digital circuit 3.3V power supply                                      | 44            | GND         | Ground             | Ground                                        |
| 11            | FEN         | Digital Input      | Function register enable, weak pull-up                                 | 45            | GND         | Ground             | Ground                                        |
| 12            | SET         | Digital Input      | Digital reset signal, weak pull-down                                   | 46            | GND         | Ground             | Ground                                        |
| 13            | TR1         | Digital Input      | Receive switch control, weak pull-down                                 | 47            | GND         | Ground             | Ground                                        |
| 14            | TR2         | Digital Input      | Transmit switch control, weak pull-down                                | 48            | GND         | Ground             | Ground                                        |
| 15            | EN          | Digital Input      | Wave control enable control, weak pull-down                            | 49            | GND         | Ground             | Ground                                        |
| 16            | GND         | Ground             | Ground                                                                 | 50            | GND         | Ground             | Ground                                        |
| 17            | GND         | Ground             | Ground                                                                 | 51            | GND         | Ground             | Ground                                        |
| 18            | TX4         | Output             | 0V after power on                                                      | 52            | GND         | Ground             | Ground                                        |
| 19            | RX4         | Output             | 3.3V after power on                                                    | 53            | RF2         | Radio<br>Frequency | Channel 2 RF port                             |
| 20            | RX3         | Output             | 3.3V after power on                                                    | 54            | GND         | Ground             | Ground                                        |
| 21            | TX3         | Output             | 0V after power on                                                      | 55            | GND         | Ground             | Ground                                        |
| 22            | GND         | Ground             | Ground                                                                 | 56            | VDD33       | power supply       | 3.3V power supply for channel 1 and channel 2 |
| 23            | GND         | Ground             | Ground                                                                 | 57            | VDD33       | power supply       | 3.3V power supply for channel 1 and channel 2 |



| PIN<br>NUMBER | PIN<br>NAME | PORT<br>ATTRIBUTES | PIN FUNCTION                              | PIN<br>NUMBER | PIN<br>NAME | PORT<br>ATTRIBUTES | PIN FUNCTION                                  |
|---------------|-------------|--------------------|-------------------------------------------|---------------|-------------|--------------------|-----------------------------------------------|
| 24            | GND         | Ground             | Ground                                    | 58            | VDD33       | power supply       | 3.3V power supply for channel 1 and channel 2 |
| 25            | RF4         | Radio<br>Frequency | Channel four RF port                      | 59            | GND         | Ground             | Ground                                        |
| 26            | GND         | Ground             | Ground                                    | 60            | GND         | Ground             | Ground                                        |
| 27            | GND         | Ground             | Ground                                    | 61            | RF1         | Radio<br>Frequency | Channel 1 RF Port                             |
| 28            | VDD33       | power supply       | Channel 3 and Channel 4 3.3V power supply | 62            | GND         | Ground             | Ground                                        |
| 29            | VDD33       | power supply       | Channel 3 and Channel 4 3.3V power supply | 63            | GND         | Ground             | Ground                                        |
| 30            | VDD33       | power supply       | Channel 3 and Channel 4 3.3V power supply | 64            | GND         | Ground             | Ground                                        |
| 31            | GND         | Ground             | Ground                                    | 65            | TX2         | Output             | 0V after power on                             |
| 32            | GND         | Ground             | Ground                                    | 66            | RX2         | Output             | 3.3V after power on                           |
| 33            | RF3         | Radio<br>Frequency | Channel three RF port                     | 67            | RX1         | Output             | 3.3V after power on                           |
| 34            | GND         | Ground             | Ground                                    | 68            | TX1         | Output             | 0V after power on                             |

# VI. Typical test curve

(unless otherwise specified, the test conditions are 3.3V power supply voltage, normal temperature environment) Transceiver gain and port standing wave

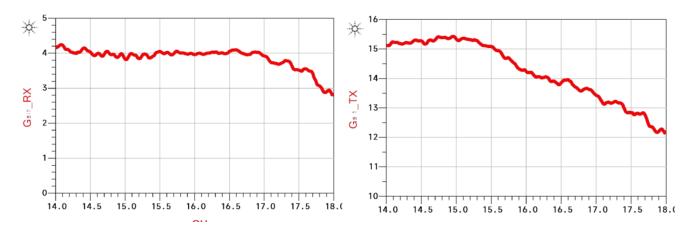



Figure 3. Receive Gain (RF\_CHn to RF\_COM)

Figure 4. Transmit Gain (RF\_COM to RF\_CHn)



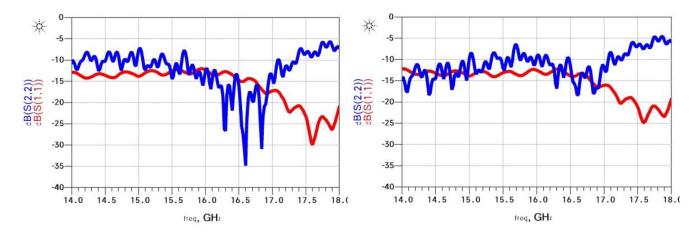



Figure 5. Receive port return loss

Figure 6. Transmit port return loss

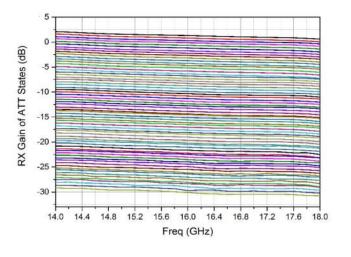



Figure 7. Receive Gain 64-State Attenuation Curve vs Frequency

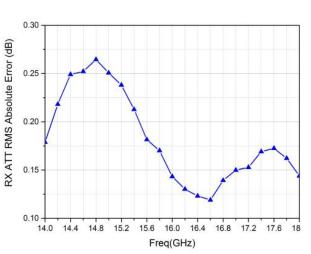



Figure 9. Receive Mode RMS Attenuation Error vs Frequency

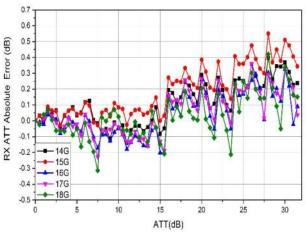



Figure 8. Receive mode attenuation error vs attenuation value

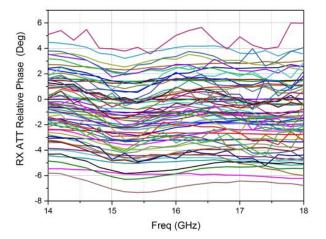



Figure 10. Receive Mode 64 Additional Phase Shift vs Frequency During State Attenuation



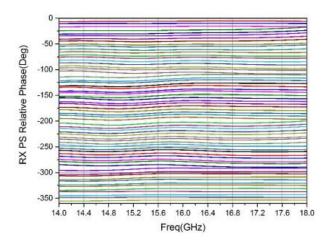



Figure 11. Relative phase shift curve of receiving mode 64 vs frequency

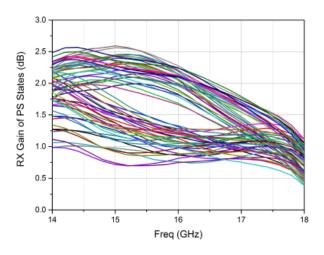



Figure 13. Transmitter Gain 64-State Attenuation

Curve vs Frequency

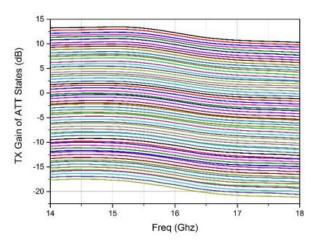



Figure 15. Transmitter Gain 64-State Attenuation

Curve vs Frequency

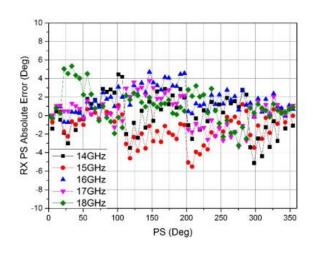



Figure 12. Receive mode phase shift error vs phase shift value

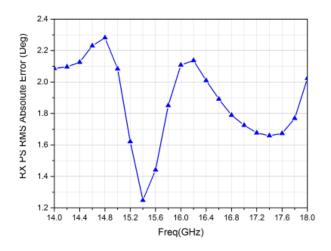



Figure 14. Receive Mode RMS Phase Error vs Frequency

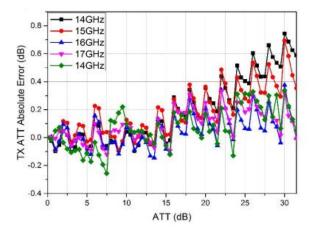



Figure 16. Transmit mode attenuation error vs attenuation value



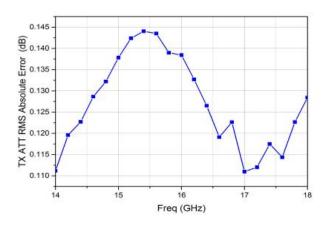
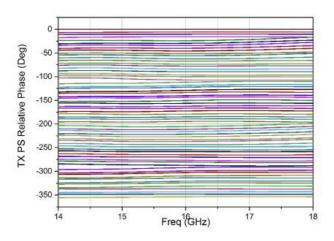




Figure 17. Transmit Mode RMS Attenuation Error vs Frequency

Figure 18. Additional phase shift vs frequency when transmitting mode 64 decays



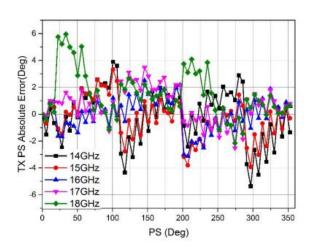
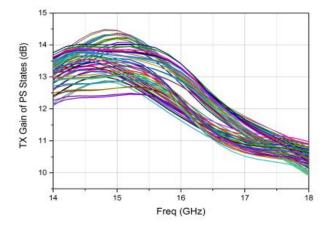




Figure 19. Transmit mode 64 state relative phase shift curve vs frequency

Figure 20. Transmit mode phase shift error vs phase shift value



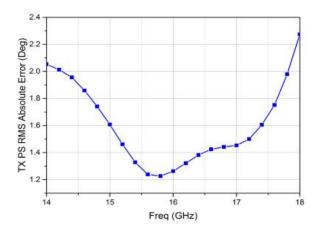
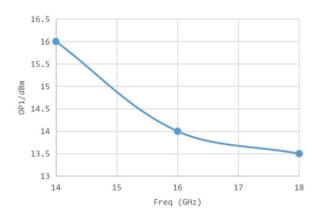




Figure 21. Transmit Mode 64 Phase Shift Gain Curve vs Frequency

Figure 22. Transmit Mode RMS Phase Error vs Frequency





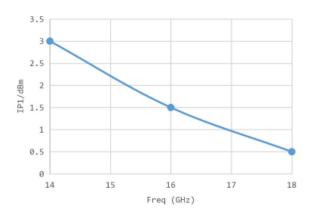



Figure 23 Transmit output 1dB power vs frequency

Figure 24. Receive input 1dB power vs frequency

### VII. Digital wave control function

The overall block diagram of the multifunctional chip digital wave control circuit

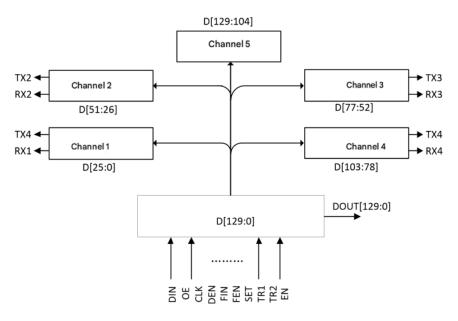



Figure 25. Digital control system block diagram

Channels 1 to 4 control four RF channel links, and the fifth channel data D[129:D104] is a spare digital code.

### 7.1. Status control output description

The transmit and receive state control is listed in Table 4. The five channels use the same logic control. The control input of each channel is composed of the TR1 and TR2 wave control signals of the chip as a whole and the MCT and MCR data input of each channel. The positions of MCT and MCR are listed in Table 5. RX and TX are the wave control signals of each channel.

Control output, which can be used to control the status of external LNA and PA of each channel.



# 7.2. Description of each channel's receiving and sending status control

Table 5.

|     | ENTER |     |     |     |              | CHANNEL STATUS AND OUTPUT |              |                  |      |      |
|-----|-------|-----|-----|-----|--------------|---------------------------|--------------|------------------|------|------|
| EN  | TR1   | TR2 | MCT | MCR | COM-RX       | COM-TX                    | COM-Load     | state            | RX   | TX   |
| 0   | 0     | 0   | 0   | 0   | Conductivity | Shutdown                  | Shutdown     | Receiving state  | 0    | 0    |
| 0/1 | 0     | 0   | 0   | 1   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0   | 0     | 0   | 1   | 0   | Conductivity | Shutdown                  | Shutdown     | Receiving state  | 0    | 0    |
| 0/1 | 0     | 0   | 1   | 1   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0/1 | 0     | 1   | 0   | 0   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0/1 | 0     | 1   | 0   | 1   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0/1 | 0     | 1   | 1   | 0   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0/1 | 0     | 1   | 1   | 1   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0   | 1     | 0   | 0   | 0   | _            | _                         | _            | Transition state | 3.3V | 0    |
| 0/1 | 1     | 0   | 0   | 1   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0   | 1     | 0   | 1   | 0   | _            | _                         | _            | Transition state | 3.3V | 0    |
| 0/1 | 1     | 0   | 1   | 1   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0   | 1     | 1   | 0   | 0   | Shutdown     | Conductivity              | Shutdown     | Emission state   | 3.3V | 3.3V |
| 0   | 1     | 1   | 0   | 1   | Shutdown     | Conductivity              | Shutdown     | Emission state   | 3.3V | 3.3V |
| 0/1 | 1     | 1   | 1   | 0   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |
| 0/1 | 1     | 1   | 1   | 1   | Shutdown     | Shutdown                  | Conductivity | Load state       | 3.3V | 0    |

Table 6.

|           | WAVE CONTROL 130-BIT DATA DEFINITION |         |          |          |          |  |  |  |  |
|-----------|--------------------------------------|---------|----------|----------|----------|--|--|--|--|
|           | First Channel                        |         |          |          |          |  |  |  |  |
| D[25:20]  | D19                                  | D18     | D[17:12] | D[11:6]  | D[5:0]   |  |  |  |  |
| AT1[5:0]  | MCR1                                 | MCT1    | AR1[5:0] | PT1[5:0] | PR1[5:0] |  |  |  |  |
|           |                                      | Second  | channel  |          |          |  |  |  |  |
| D[51:46]  | D45                                  | D44     | D[43:38] | D[37:32] | D[31:26] |  |  |  |  |
| AT2[5:0]  | MCR2                                 | MCT2    | AR2[5:0] | PT2[5:0] | PR2[5:0] |  |  |  |  |
|           | •                                    | Third C | Channel  |          |          |  |  |  |  |
| D[77:72]  | D71                                  | D70     | D[69:64] | D[63:58] | D[57:52] |  |  |  |  |
| AT3[5:0]  | MCR3                                 | MCT3    | AR3[5:0] | PT3[5:0] | PR3[5:0] |  |  |  |  |
|           | Fourth channel                       |         |          |          |          |  |  |  |  |
| D[103:98] | D97                                  | D96     | D[95:90] | D[89:84] | D[83:78] |  |  |  |  |
| AT4[5:0]  | MCR4                                 | MCT4    | AR4[5:0] | PT4[5:0] | PR4[5:0] |  |  |  |  |



| WAVE CONTROL 130-BIT DATA DEFINITION |                   |      |            |            |            |  |  |
|--------------------------------------|-------------------|------|------------|------------|------------|--|--|
|                                      | Channel 5 (spare) |      |            |            |            |  |  |
| D[129:124]                           | D123              | D122 | D[121:116] | D[115:110] | D[109:104] |  |  |
| AT5[5:0]                             | MCT5              | MCR5 | AR5[5:0]   | PT5[5:0]   | PR5[5:0]   |  |  |

Note: The chip automatically resets when powered on

After power-on, the default value of MCT=MCR is 1, and the chip is in load state by default; in load state, the chip is not powered off; when each channel switches state, the MCR and MCT inputs of the channel need to be configured accordingly;

TX wave control output is used, in order to ensure the normal operation of the entire transmission link, first input 12'h3e0 through FIN to configure the function register.

27 for the sequence.

### 7.3. Wave control timing diagram

Data input timing, the clock cycle can be 1~40MHz.

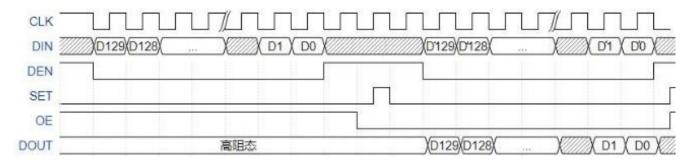



Figure 26. Data input timing

DIN has a total of 130 digits;

SET is the trigger signal

When DEN is low, the digital sample is valid;

DOUT is the data serial output and is in high impedance state when OE is high.

Parallel port output timing (TR switching)

### 7.4. Parallel port output timing

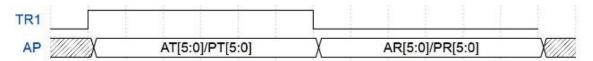



Figure 27.



## 7.5. FIN data input timing

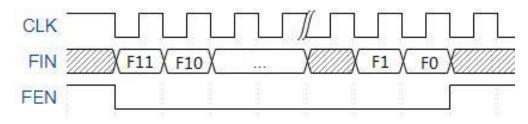



Figure 28.

## **VIII. Packaging Solutions**

The chip adopts QFN68 pin package with a size of 8mm×8mm. The detailed size information is shown in the figure below.

The metal on the back of the chip after packaging is the ground terminal of the DC and AC signals of the entire chip and the main heat dissipation output terminal of the chip. When used, it needs to have a fully ideal connection with the ground plane on the board and fully good heat dissipation.

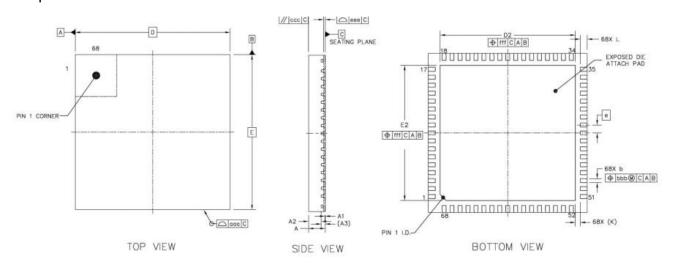



Figure 29. Package front view, side view, bottom view

### 8.1. Package size

Table 7.

| DIMENSION SYMBOLS | VALUE (MM) |           |         |  |  |
|-------------------|------------|-----------|---------|--|--|
| DIMENSION STMBOLS | MINIMUM    | NOMINAL   | MAXIMUM |  |  |
| Α                 | 0.8        | 0.85      | 0.9     |  |  |
| A1                | 0          | 0.02      | 0.05    |  |  |
| A2                | _          | 0.65      | _       |  |  |
| A3                |            | 0.203 REF |         |  |  |
| b                 | 0.15       | 0.20      | 0.25    |  |  |



| DIMENSION SYMBOLS | VALUE (MM) |          |         |  |  |  |
|-------------------|------------|----------|---------|--|--|--|
| DIMENSION SYMBOLS | MINIMUM    | NOMINAL  | MAXIMUM |  |  |  |
| D                 |            | 8 BSC    |         |  |  |  |
| E                 |            | 8 BSC    |         |  |  |  |
| е                 |            | 0.4 BSC  |         |  |  |  |
| D2                | 6.7        | 6.8      | 6.9     |  |  |  |
| E2                | 6.7        | 6.8      | 6.9     |  |  |  |
| L                 | 0.25       | 0.35     | 0.45    |  |  |  |
| K                 |            | 0.25 REF |         |  |  |  |
| aaa               |            | 0.1      |         |  |  |  |
| ccc               |            | 0.1      |         |  |  |  |
| eee               |            | 0.08     |         |  |  |  |
| bbb               |            | 0.07     |         |  |  |  |
| fff               |            | 0.1      |         |  |  |  |

# IX. Application Circuit

BSTCC58-1418 chip adopts plastic QFN package, with 68 pins in total. The recommended application circuit diagram is shown in the figure below.




Figure 30



COM, RF1, RF2, RF3 and RF4 are both RF signal ports, which require 50 ohm transmission lines to connect. RF signal ports do not require external DC blocking capacitors. The power supply voltage of this chip is 3.3V. When used, a 0.1uF chip capacitor is placed close to the chip VDD33 pin to the ground. In addition, this four-channel chip requires at least 68uF tantalum capacitor filtering to reduce the fluctuation of the chip power supply voltage during pulse switching.

The back of the chip is the ground terminal for DC and AC. It needs to be fully grounded when used and provide a good heat dissipation path.