

1 Product Overview

BST9739 14bit 2.5GSPS High performance RF DAC that can generate DC Up to 3GHz The DAC core uses a four-phase switching structure to provide outstanding low-distortion performance and industry-leading direct RF output capability. When the chip works in baseband mode, it can generate multi-carrier signals within the first Nyquist frequency, and when working in mixing mode, it can output multi-carrier signals in the second and third Nyquist intervals. The output current can be configured from 8.66mA to 31.66mA.

The on-chip controller greatly simplifies system integration. The chip has a dual-ended, source-synchronous LVDS interface, thus simplifying the integration with FPGA/ASIC The on-chip controller manages the internal and external clock domain interfaces over a wide temperature range, ensuring that data is transmitted from the host to the DAC. The multi-chip synchronization function is realized by the on-chip synchronization controller. The chip is configured and registers are accessed through the serial peripheral interface (SPI).

BST9739 Using 0.18µm CMOS Process implementation, working at 1.8V and 3.3V Dual power supply. Package adopts 160 foot

BGA Plastic packaging to reduce packaging parasitic parameters and be compatible with foreign products.

2 Features

Resolution: 14 Bit

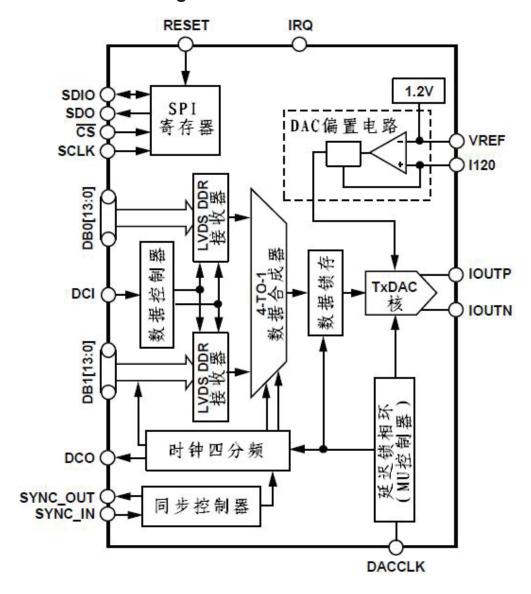
Supply voltage: 3.3V, 1.8V Dual power supply

Output range: 8.66mA ~ 31.66mA
 Differential nonlinearity: ≤± 0.8LSB
 Integral nonlinearity: ≤± 1.3LSB

• Spurious Free Dynamic Range: 69.5dBc (100MHz@2.4GSPS Typical value)

• Power consumption: 1.2W@2.5GSPS

Quality grade: QJB, refer to GJB7400-2011 N class


• Operating temperature range: -55 ~ + 105°C

3 Corresponding to the situation of replacing foreign products

BST9739 With ADI The company's AD9739 The circuits are compatible and can be plugged in and used as a replacement

4 Circuit Function Block Diagram

Functional Block Diagram

5 Electrical characteristics parameters

DC Performance Specifications
VDDA = VDD33 = 3.3 V, VDDC = VDD = 1.8 V, IOUTFS = 20 mA.

Table 1.

	10010 1.			
parameter	Minimum	Typical Value	Maximum	unit
Resolution		14		Bit
	Accuracy			
Integral Nonlinearity (INL)		±1.3		LSB
Differential Nonlinearity (DNL)		±1.3		
	Analog Output			
Gain Error (Using Internal Reference)		5.5		%
Full scale output current	8.66	20.2	31.66	mA
Output voltage range	-1		1	V
Common mode output impedance		10		MΩ
Differential output impedance		70		Ω
Output Capacitor		1		pF
DAC Cloc	k input (DACCLK_F	P, DACCLK_N)		
Differential Peak-to-Peak	1.2	1.6	2	V
Common mode voltage		900		mV
DAC Clock rate	0.8		2.5	GHz
	Temperature Dri	ft		
Gain		60		ppm/°C
Reference voltage		20		ppm/°C
	Reference Benchm	nark		
External reference voltage	1.15	1.2	1.25	V
Output Impedance		5		kΩ
	Analog supply volt	age		
VDDA	3.1	3.3	3.5	V
VDDC	1.7	1.8	1.9	V
	Digital supply volta	age		
VDD33	3.1	3.3	3.5	V
VDD	1.7	1.8	1.9	V
Supply Curre	ent and Power Diss	ipation, 2.0GSPS		
I _{VDDA}		37	38	mA
I _{VDDC}		159	166	mA
I _{VDD33}		34	37	mA
I _{VDD}		233	238	mA
Power consumption		0.94	0.976	W
Sleep mode, I VDDA		2.5	2.75	mA
Power-down mode (register 0x01=0x03, 0x02=0x80)		0.02		mA
I _{VDDA}		3.8		mA
VDDA		0.5		mA
VDDC VDD33		0.1		mA
l _{VDD}				
Supply Current and Power Dissipation, 2.5GSPS		37		mA
I _{VDDA}	223			mA
I _{VDDC}	34			mA
	290			mA
I _{VDD33}		1.16		W
Power consumption		0.02		mA
i owei consumption		0.02		111/4

LVDS digital performance indicators

VDDA = VDD33 = 3.3 V, VDDC = VDD = 1.8 V, IOUTFS = 20 mA. Unless otherwise specified, the LVDS driver and receiver are IEEE Standard 1596.3-1996.

Table 2.

parameter	Minimum	Typical Value	Maximum	unit
LVDS Data ii	nput (DB0[13:0], D	B1[13:0])¹		•
Input common-mode voltage range, V _{COM}	825		1575	mV
Differential Input Logic High Threshold, V _{IH_DTH}	175	400		mV
Differential Input Logic Low Threshold, V _{IL DTH}	-175	-400		mV
Receiver differential input impedance, R IN	80		120	Ω
Input Capacitance		1.2		pF
LVDS Input rate	1250			MSPS
LVDS Minimum data valid period, t _{VALID}			344	ps
LVDS Cloc	k Input (DCI and S	YNC_IN) ²		<u> </u>
Input common-mode voltage range, V _{COM}	825		1575	mV
Differential Input Logic High Threshold, V _{IH DTH}	175	400		mV
Differential Input Logic Low Threshold, V _{IL DTH}	-175	-400		mV
Receiver differential input impedance, R _{IN}	80		120	Ω
Input Capacitance		1.2		pF
Maximum clock rate	625			MHz
VDS Clock ou	utput (DCO and SY	NC_OUT) ³		
Output voltage high level (x_P or x_N)			1375	mV
Output voltage low level (x_P or x_N)	1025			mV
Output differential voltage, V _{OD}	150	200	250	mV
Output offset voltage, V os	1150		1250	mV
Output impedance, single-ended, R _o	80	100	120	Ω
R O Single-ended mismatch			10	%
Maximum clock rate	625			MHz

Serial port performance indicators VDDA = VDD33 = 3.3 V, VDDC = VDD = 1.8 V.

Table 3.

parameter	Minimum	Typical Value	Maximum	unit
Write Ope	ration (See Figure	36)		
SCLK Clock rate, f _{SCLK} (or t _{SCLK})			20	MHz
SCLK Clock High, t _{HI}	18			ns
SCLK Clock High, t _{LOW}	18			ns
SDIO to SCLK Settling time, t _{DS}	2			ns
SCLK to SDIO Hold time, t _{DH}	1			ns
CS to SCLK Settling time, t _s	3			ns
SCLK To CS hold time, t _H	2			ns
Write operation (see Figure 37 and	Figure 38)		
SCLK Clock rate, f _{SCLK} (or t _{SCLK})			20	MHz
SCLK Clock High, t _{HI}	18			ns
SCLK Clock low, t _{LOW}	18			ns
SDIO to SCLK Settling time, t _{DS}	2			ns
SCLK to SDIO Hold time, t_{DH}	1			ns
CS to SCLK Settling time, t _s	3			ns
SCLK To SDIO (or SDO) data valid time, t _{DV}			15	ns
CS to SDIO (or SDO) to High-Z Effective output, $t_{\rm EZ}$		2		ns
Input	(SDIO, SCLK, CS)			
Input high level voltage, V _{IH}	2	3.3		V
Input low level voltage, V _{IL}		0	0.8	V
Input high level current, IIH	-10		10	μA
Input Low Level Current, I _{IL}	-10		10	μA
C	Output (SDIO)			
Output high level voltage, V $_{\mathrm{OH}}$	2.4			V
Output low level voltage, V _{OL}	0		3.5	V
Output high level current, I _{OH}		4	0.4	mA
Output low level current, I OL		4		mA

AC Performance Index VDDA = VDD33 = 3.3 V, VDDC = VDD = 1.8 V, IOUTFS = 20 mA, fDAC = 2400 MSPS.

Table 4.

parameter	Minimum	Typical	Maximum	unit		
Dynamic performance						
DAC Clock rate	800	2500		MSPS		
Adjustable DAC Update rate range 4	800	2500		MSPS		
Output stabilization time (tst) to 0.1 %		13		ns		
Spurious Free Dy	/namic Range (S	FDR)				
fOUT = 100MHz		69.5		dBc		
fOUT = 350MHz		58.5				
fOUT = 550MHz	54			dBc		
fOUT = 950MHz		60				
Two - tone signal intermodulation di	stortion (IMD), f0	OUT2 = fOUT1	+1.25 MHz			
fOUT = 100MHz		94		dBc		
fOUT = 350MHz	78		dBc			
fOUT = 550MHz	72		dBc			
fOUT = 950MHz	68			dBc		
Noise spectral density (N	SD), 0dBFS Sing	le tone signal				
fOUT = 100MHz	-166			dBm/Hz		
fOUT = 350MHz	-161		dBm/Hz			
fOUT = 550MHz	-160		dBm/Hz			
fOUT = 850MHz	-160			dBm/Hz		
WCDMA ACLR (single carrier), a	djacent / alterna	te adjacent cha	annels			
fDAC =2457.6MSPS, fOUT = 350MHz	80/80		dBc			
fDAC =2457.6MSPS, fOUT = 950MHz	78/79		dBc			
fDAC =2457.6MSPS, fOUT = 1700MHz (Mixed Mode)	74/74			dBc		
fDAC =2457.6MSPS, fOUT = 2100MHz (Mixed Mode)	69/72			dBc		