

BST9361 RF Agile Transceiver Data Sheet

Table of Contents

- 1. General Description
- 2. Product Features
- 3. Functional Block Diagram
- 4. Packaging Information
 - 4.1. Packaging and Pin Information
- 5. Electrical Characteristics
 - 5.1. Technical Specifications
 - 5.2. Performance Testing
- 6. Ordering Information

I. General Description

BST9361 is a high-integration radio frequency (RF) transceiver applied to communication base stations, signal chain, etc. It integrates the RF, mixed signal, and digital modules required for a transceiver on a single chip. It has a wide operating frequency range (transmitter: 47 MHz - 6 GHz, receiver: 70 MHz - 6 GHz) and supports a large channel bandwidth (<200 kHz - 56 MHz). Its programmable characteristics make it suitable for time division duplex (TDD) and frequency division duplex (FDD) communication modes. The on-chip PLL has a frequency-hopping function, which can complete a single-time local oscillator frequency switch at 100 us intervals. It adopts a single-end CMOS or differential LVDS digital interface to connect with various baseband processors (BBP).

The receiver section is equipped with automatic gain control (AGC) and manual gain control (MGC) functions. The transmitter section is equipped with a high-precision power monitor. This chip also has a self-calibration function. As a result, this chip can maintain high performance under various temperature and input signal conditions. In addition, the chip supports multiple

test modes, facilitating design debugging and radio optimization. BST9361 is packaged in a 10 mm×10 mm PBGA144.

II. Product Features

- RF 2×2 transceiver with integrated 12-bit DACs and ADCs
- TX band: 47 MHz to 6 GHz
- RX band: 70 MHz to 6 GHz
- Supports TDD and FDD operation
- Tunable channel bandwidth: <200 KHz to 56 MHz
- Dual receivers: 6 differential inputs or 12 single-ended input
- Receiver sensitivity: noise figure is 3 dB
- RX gain control: automatic gain control (AGC), manual gain control (MGC)
- Dual transmitters: 4 differential outputs
- Highly linear broadband transmitter: TX EVM≤-40dB, TX noise ≤-150dBm/Hz,
 TX monitor ≥66dB dynamic range with 1 dB accuracy
- Integrated fractional-N synthesizer; the on-chip PLL supports frequency-hopping function
- Supports Multichip synchronization
- Integrates CMOS/LVDS digital interfaces

III. Functional Block Diagram

The functional block diagram of the BST9361 is shown in Figure 1. Its typical application scenarios include point to point communication systems, general-purpose radio systems, and various cellular base stations.

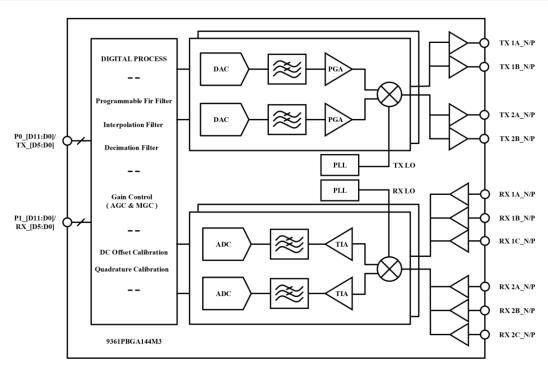


Figure 1. Functional Block Diagram

IV. Packaging Information

4.1. Packaging and Pin Information

BST9361 adopts PBGA144 packaging. The outline dimensions is shown in Figure 2.

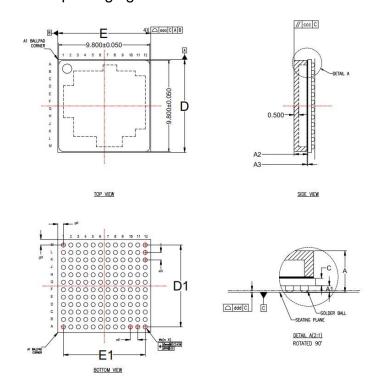


Figure 2. Outline Dimensions

Table 1

DIMENSION OVMDO	NUMERICAL VALUE, UNIT: MILLIMETRE					
DIMENSION SYMBOL	Minimum	Nominal Value	Maximum			
Total Thickness (A)	2.131	2.231	2.331			
Substrate Thickness (C)	0.366	0.406	0.446			
Ball Stand Off (A1)	0.300	0.350	0.400			
Top of PKG To Substrate (A2)	1.475REF					
Glue Thickness (A3)	0.075REF					
Ball Width (b)	0.400	0.400 0.450				
Body Size (D/E)	9.900	10.000	10.100			
Edge Ball Center to Center (D1/E1)	8.800					
Ball Pitch (eD/eE)	0.800					
Edge Ball Center to Package Edge (gD/gE)	0.600					

BST9361 pin layout diagram is shown in Figure 3.

	1	2	3	4	5	6	7	8	9	10	11	12
A	RX2A_N	RX2A_P	NC	VSSA	TX_MON 2	VSSA	TX2A_N	TX2A_P	TX2B_N	TX2B_P	VDDA1P1 _TX_VCO	
В	VSSA	VSSA	AUXDAC1	GPO_3	GPO_2	GPO_1	GPO_0	VDD_GP O	VDDA1P3 _TX_LO	VDDA1P3 _TX_VCO _LDO	TX_VCO_ LDO_OU T	VSSA
С	RX2C_P	VSSA	AUXDAC2	TEST/EN ABLE	CTRL_IN 0	CTRL_IN 1	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
D	RX2C_N	VDDA1P3 _RX_RF	VDDA1P3 _RX_TX	CTRL_OU T0	CTRL_IN	CTRL_IN 2	P0_D9/TX _D4_P	P0_D7/TX _D3_P	P0_D5/TX _D2_P	P0_D3/TX _D1_P	P0_D1/TX _D0_P	VSSD
E	RX2B_P	VDDA1P3 _RX_LO	VDDA1P3 _TX_LO_ BUFFER	CTRL_OU Tl	CTRL_OU T2	CTRL_OU T3	P0_D11/T X_D5_P	P0_D8/TX _D4_N	P0_D6/TX _D3_N	P0_D4/TX _D2_N	P0_D2/TX _D1_N	P0_D0/TX _D0_N
F	RX2B_N	VDDA1P3 _RX_VCO LDO	VSSA	CTRL_OU T6	CTRL_OU T5	CTRL_OU T4	VSSD	P0_D10/T X_D5_N	VSSD	FB_CLK_	VSSD	VDDD1P3 _DIG
G	RX_EXT_ LO_IN	RX_VCO_ LDO_OU T	VDDAIP1 _RX_VCO		EN_AGC	ENABLE	RX_FRAM E_N	RX_FRAM E_P	TX_FRAM E_P	FB_CLK_ N	DATA_CL K_P	VSSD
Н	RX1B_P	VSSA	VSSA	TXNRX	SYNC_IN	VSSA	VSSD	P1_D11/R X_D5_P	TX_FRAM E_N	VSSD	DATA_CL K_N	VDD_INT ERFACE
J	RX1B_N	VSSA	VDDA1P3 _RX_SYN TH	SPI_DI	SPI_CLK	CLK_OU T	P1_D10/R X_D5_N	P1_D9/RX _D4_P	P1_D7/RX _D3_P	P1_D5/RX _D2_P	P1_D3/RX _D1_P	P1_D1/RX _D0_P
K	RXIC_P	VSSA	VDDA1P3 _TX_SYN TH	VDDA1P3 _BB	RESETB	SPI_ENB	P1_D8/RX _D4_N	P1_D6/RX _D3_N	P1_D4/RX _D2_N	Pl_D2/RX _Dl_N	Pl_D0/RX _D0_N	VSSD
L	RX1C_N	VSSA	VSSA	RBIAS	AUXADC	SPI_DO	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
М	RX1A_P	RX1A_N	NC	VSSA	TX_MON 1	VSSA	TX1A_P	TXIA_N	TXIB_P	TX1B_N	XTALP	XTALN

Figure 3. Pin Layout Diagram

V. Electrical Characteristics

5.1. Technical Specifications

Unless otherwise noted, VDD_INTERFACE = VDD_GPO = 1.8V, VDDD1P3_DIG = 1.3V, and all VDDA1P3_x pins = 1.3V, temperature = ambient temperature.

Table 2. Specifications

PARAMETER	Min Typ		Max	UNIT	
Receivers		•			
Center Frequency	70		6000	MHz	
Minimum Gain		70		dB	
Noise Figure (NF)		3		dB	
Third-Order Input Intermodulation Intercept Point under Minimum Gain (IIP3)		-18		dBm	
Second-Order Input Intermodulation Intercept Point under Minimum Gain (IIP2)		45		dBm	
Local Oscillator (LO) Leakage		-120		dBm	
Modulation Accuracy (EVM)		-40		dB	
Input S11		-10		dB	
Transmitters					
Center Frequency	47		6000	MHz	
Power Control Range		90		dB	
Power Control Accuracy		0.25		dB	
Maximum Output Power		7.5		dBm	
Noise Floor		-150		dBm/Hz	
Third-Order Output Intermodulation Intercept Point (OIP3)		19		dBm	
Carrier Leakage		-50		dBc	
Modulation Accuracy (EVM)		-40		dB	
Output S22		-10		dB	

5.2. Performance Testing

Test conditions: $V_{DD_INTERFACE} = V_{DD_GPO} = 1.8V$, $V_{DDD1P3_DIG} = 1.3V$, and all V_{DDA1P3_x} pins = 1.3V.

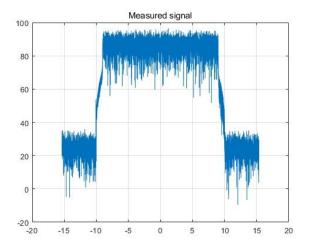


Figure 4. RX LTE20M Test Result (Spectrum Diagram)

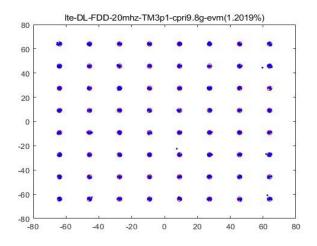


Figure 5. RX LTE20M Test Result (constellation diagram, EVM = -40 dB)

VI. Ordering Information

Table 3. Ordering Information

MODEL	PACKAGE TYPE	PACKAGE MATERIAL	QUALITY ASSURANCE LEVEL	PIN MATERIAL	WEIGHT	DETAILED SPECIFICATION
BST9361	PBGA144	Plastic seal	N1 level	Sn63Pb37	-	-

Notes:

- 1. N/N1 devices meet the screening requirements of GJB 7400A <General Specification for Semiconductor Integrated Circuits for Certification by Qualified Manufacturer> at level N/N1.
- 2. The product ordering information is our existing products or devices determined to develop, and according to user needs, we can develop other packaging forms of devices.