

BST150-3.0

1. Product Overview

BST150-3.0 is an ultra-low noise (9µVrms) low dropout linear regulator. The input voltage is 3.4V to 5.5V, and it consumes 120mV voltage difference when driving a maximum load current of 150mA, which is suitable for low power and high efficiency applications. BST150-3.0 can obtain excellent noise performance without adding external noise bypass capacitors. It also has high PSRR and linear and load adjustment characteristics, and is used in noise-sensitive analog circuits and RF circuits. The input/output capacitors are 1uF ceramic to ensure system stability. Overvolt-age, overcurrent and overheating protection functions are integrated. Two packaging forms are available: 5-pin ceramic CLCC5 and plastic DFN5 to meet various portable power applications. BST150-3.0 input and output are connected to at least 1uF ceramic capacitors. EN can be turned on after VIN is stable or powered on with VIN.

2. Product Features

- Input voltage range: 3.4V to 5.5V.
- · Fixed output voltage: 3.0V.
- Output integrated RMS noise: 9µVrms@10-100KHZ.
- Input/output 1uF ceramic capacitors to ensure stability.
- · No external noise bypass capacitors required.
- · Operating current without load current: 12 uA.
- Quiescent current at 150 mA load current: 320uA.
- · Maximum drivable load current: 150mA.
- Minimum input output voltage difference: 1 20 mV.
- ±2% Total Output Voltage Regulation Accuracy.
- Power supply rejection PSRR: 70dB@10KHZ.
- Overvoltage, overcurrent and overtemperature protection.
- 5-pin CLCC5 and DFN5 packages.

3. Functional Block Diagram

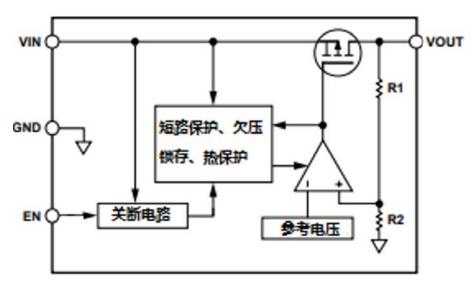


Figure 1. Functional block diagram

Pin Assignment Diagram

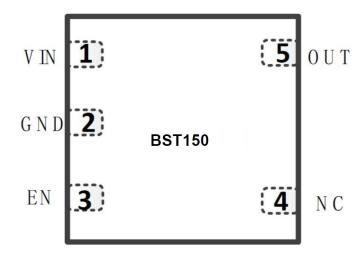
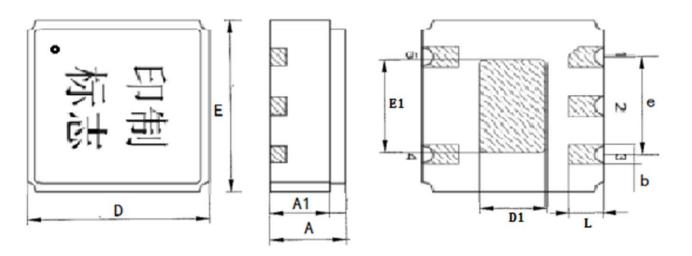


Figure 1. Functional block diagram

Pin Description


Table 1. Pin Description

Pin number	symbol	Function		
1	VIN	Input voltage terminal, connect 1uF bypass capacitor to ground		
2	GND	Ground pin		
3	EN	Enable terminal, high level is effective		
4	NC	Dangling		
5	VOUT	Voltage output terminal, connect 1uF bypass capacitor to ground		

Note: EN can be short-circuited with VIN and powered on together

4. Product appearance

Ceramic CLCC5 package

Dimension symbols	Value (mm)					
Dimension symbols	Minimum	Nominal	maximum			
A	0.70	_	0.90			
b	_	0.40	_			
L	_	0.45	_			
е	_	0.95	_			
D	2.70	2.80	2.90			
E	2.80	2.90	3.00			
D1	1.00	1. 10	1.20			
E1	1.70	1.8 0	1.90			

5. Electrical Parameters

Table 2. Electrical properties

		Condition	Limit value			
characteristic	symbol	Unless otherwise specified $V_{IN} = (V_{OUT} + 0.4V) \sim 5.5V$ $-55 \degree C \le T_A \le 12.5 \degree C$	Minimum	typical	maximum	unit
Input voltage range	V _{IN}		3.4.	_	5.5	V
Shutdown current	I _{GND-SD}	EN = GND V _{IN} =3.4V~5.5V	_	_	5	
Output voltage accuracy	VOUTA	I _{OUT} = 10mA	-2	_	2	%
Voltage Regulation	V _{OUT} /△V _{IN}	25 °C	-0.05	_	0.05	%/V
			-0.1	_	0.1	
Current Regulation	△V _{OUT} /△I	25 °C, I _{OUT} =100μ to 150mA	_	0.003	0.01	%/mA
		I _{OUT} = 100μ to 150mA	_	_	0.012	
Minimum input-output pressure differ- ence	V _{DROPOUT}	25 °C, I _{OUT} = 150mA	_	0.12	0.18	V
		I _{OUT} = 150mA	_	_	0.2	
Limiting threshold current	I _{LIMIT}		160	_	400	mA
Undervoltage lockout input rising voltage	UVLO _R		_		1.96	V
Undervoltage lockout input falling voltage	UVLO _F		1.28		_	V
Undervoltage lockout hysteresis voltage	UVLO _H	25°C	_	120	300	mV
Output voltage	V_{OUT}		2.94		3.06	V
Enable input high level voltage	V _I	V _{IN} =3.4V~5.5V	1.2	—	_	V
Enable input low level voltage	VIL	V _{IN} =3.4V~5.5V	_	_	0.4	V
Quiescent Current	Q	I _{OUT} = 0mA		12		μΑ
		I _{OUT} = 150mA	_	320	500	
Integrated RMS noise	OUT _{NOISE}	$f_{IN} = 10Hz \text{ to } 100kHz$ $V_{IN} = 5.0V$		9	20	μVrsm
Power Supply Voltage Rejection Ratio (V IN = V OUT +1V)	PSRR	10kHz, $V_{IN} = 5V$ $V_{OUT} = 3.0V$ $I_{OUT} = 10$ mV, 25°C	60	70		dB
Opening time	t star	V _{OUT} =3.0V, 25°C	_	150	240	μs