

BST150-1.8

1. Product Overview

BST150-1.8 is an ultra-low noise ($9\mu Vrms$) low dropout linear regulator. The input voltage is 2.2V to 5.5V, and it consumes 120mV voltage difference when driving a maximum load current of 150mA, which is suitable for low power and high efficiency applications. BST150-1.8 can obtain excellent noise performance without adding external noise bypass capacitors. It also has high PSRR and linear and load adjustment characteristics, and is used in noise-sensitive analog circuits and RF circuits. The input/output capacitors are 1uF ceramic to ensure system stability. Overvolt-age, overcurrent and overheating protection functions are integrated. Two packaging forms are available: 5-pin ceramic CLCC5 and plastic DFN5 to meet various portable power applications. BST150-1.8 input and output are connected to at least 1uF ceramic capacitors. EN can be turned on after VIN is stable or powered on with VIN.

2. Product Features

- Input voltage range: 2.2V to 5.5V.
- Fixed output voltage: 1.8V.
- Output integrated RMS noise: 9µVrms@10-100KHZ.
- Input/output 1uF ceramic capacitors to ensure stability.
- · No external noise bypass capacitors required.
- Operating current without load current: 12uA.
- Quiescent current at 150 mA load current: 320uA.
- · Maximum drivable load current: 150mA.
- Minimum input output voltage difference: 1 20mV.
- ±2% Total Output Voltage Regulation Accuracy.
- Power supply rejection PSRR: 70dB@10KHZ.
- Overvoltage, overcurrent and overtemperature protection.
- 5-pin CLCC5 and DFN5 packages.

3. Functional Block Diagram

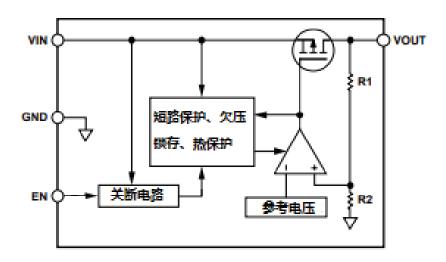
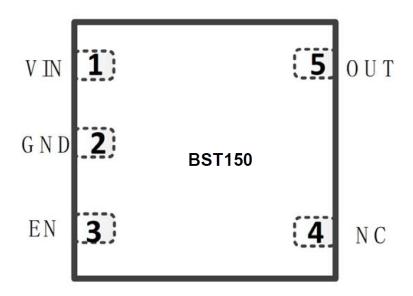



Figure 1. Functional block diagram

Pin Assignment Diagram

Pin Description

Table 1. Pin Description

Pin number	symbol	Function			
1	VIN	Input voltage terminal, connect 1uF bypass capacitor to ground			
2	GND	Ground pin			
3	EN	Enable terminal, high level is effective			
4	NC	Dangling			
5	VOUT	Voltage output terminal, connect 1uF bypass capacitor to ground			

Note: EN can be short-circuited with VIN and powered on together

Table 2. Electrical properties

		Condition	Limit value			
characteristic	symbol	Unless otherwise specified $V_{IN} = (V_{OUT} + 0.4V) \sim 5.5V$ -55 °C $\leq T_A \leq 12.5$ °C	Minimum	typical	maximum	unit
Input voltage range	V _{IN}		2.2	_	5.5	V
Output Current	I _{OUT}		150	_		mA
Shutdown current	I _{GND - SD}	$EN = GND V_{IN} = 2.2V \sim 5.5V$	_	_	5	μA
Output voltage accuracy	V_{OUTA}	I _{OUT} = 10mA	- 2.5	_	+ 2.5	%
Voltage Regulation	$\Delta_{VOUT}/\Delta_{VIN}$		-0.1	_	+0.1	%/V
Current Regulation	$\Delta_{VOUT}/\Delta_{IOUT}$	$I_{OUT} = 100 \text{ to } 150 \text{ mA}$	_	_	0.012	%/mA
Limiting threshold current	I _{LIMIT}		160		400	mA
Undervoltage lockout input rising voltage	U _{VLOR}		_	_	1.96	V
Undervoltage lockout input falling voltage	U _{VLO F}		1.28	_	_	V
Output voltage	V _{OUT}		1.755		1.845	V
Enable input high level voltage	V _I	V _{IN} =2.2V~5.5V	1.2	_	_	V
Enable input low level voltage	VIL	V _{IN} =2.2V~5.5V	_	_	0.4	V
Enable Input Leakage Current	I _{INEN}	EN = GND or V _{IN}	_	_	1	μΑ
Quiescent Current	Q	I _{OUT} = 150mA	_	_	500	μA
Power supply rejection	PSRR	1kHz, 25 °C I_{OUT} = 10mA , V_{IN} = 2.8V	60	70		dB
Integrated RMS noise	OUT NOISE	$f_{IN} = 10H \text{ to } 100kHz V_{IN} = 5.0V$	_	9	20	μVrms
Opening time	t star	VOUT = 1.8V	_	150	240	μs